wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:

sinAcotA+cosecA=2+sinAcotAcosecA

Open in App
Solution

LHS=sinAcotA+cosecA

=sinAcosAsinA+1sinA

=sinA1+cosAsinA

=sinA×sinA1+cosA

=sin2A1+cosA

=1cos2A1+cosA

=(1cosA)(1+cosA)1+cosA

=1cosA

LHS=1cosA---(1)


RHS=2+sinAcotAcosecA

=2+sinAcosAsinA1sinA

=2+sinAcosA1sinA

=2+sinA×sinAcosA1

=2+sin2A1cosA

=2+1cos2AcosA1

=2+(1cosA)(1+cosA)(1cosA)

=2(1+cosA)

=21cosA

=1cosA

RHS=1cosA---(2)

From (1) and (2)

LHS=RHS

sinAcotA+cosecA=2+sinAcotAcosecA

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon