Show that:
sinAcotA+cosecA=2+sinAcotA−cosecA
LHS=sinAcotA+cosecA
=sinAcosAsinA+1sinA
=sinA1+cosAsinA
=sinA×sinA1+cosA
=sin2A1+cosA
=1−cos2A1+cosA
=(1−cosA)(1+cosA)1+cosA
=1−cosA
⇒LHS=1−cosA---(1)
RHS=2+sinAcotA−cosecA
=2+sinAcosAsinA−1sinA
=2+sinAcosA−1sinA
=2+sinA×sinAcosA−1
=2+sin2A1−cosA
=2+1−cos2AcosA−1
=2+(1−cosA)(1+cosA)−(1−cosA)
=2−(1+cosA)
=2−1−cosA
=1−cosA
⇒RHS=1−cosA---(2)
From (1) and (2)
LHS=RHS
∴sinAcotA+cosecA=2+sinAcotA−cosecA
Hence, proved.