wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

sin{2 tan11x1+x}

Open in App
Solution


y=sin{2 tan11x1+x}
Let x=sin θ
1x1+x=1sin θ1+sin θ=sin2 θ2+cos2θ22sinθ2.cosθ2sin2 θ2+cos2θ2+2sin θ2cosθ2
1x1+x=(sin θ2cosθ2)2(sin θ2+cos θ2)2
1x1+x=sin θ2cos θ2sin θ2+cos θ2=(1tan θ2)1+tanθ2
1x1+x=tan(θ2π4)=tan(π4θ2)
y=sin [2 tan11x1+x]=sin[2 tan1[tan (π4θ2)]]
y=sin[2(π4θ2)]
y=sin(π2θ)
y=cos θ
y=cos(sin1x)
y=1x2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Functions
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon