y=sin{2 tan−1√1−x1+x}
Let x=sin θ
1−x1+x=1−sin θ1+sin θ=sin2 θ2+cos2θ2−2sinθ2.cosθ2sin2 θ2+cos2θ2+2sin θ2cosθ2
1−x1+x=(sin θ2−cosθ2)2(sin θ2+cos θ2)2
∴ √1−x1+x=sin θ2−cos θ2sin θ2+cos θ2=−(1−tan θ2)1+tanθ2
√1−x1+x=−tan(θ2−π4)=tan(π4−θ2)
y=sin [2 tan−1√1−x1+x]=sin[2 tan−1[tan (π4−θ2)]]
∴ y=sin[2(π4−θ2)]
∴ y=sin(π2−θ)
∴ y=cos θ
∴ y=cos(sin−1x)
∴ y=√1−x2