sinnx=∑nr=0arsinrx where n is an odd natural number, then
a0 = 0, a1 = n
sin nx = Im(einx) = Im[(cosx+isinx)n]
= nC1cosn−1x.sinx−nC3cosn−3x.sin3x+nC5cosn−5x.sin5x+...............
Since n is odd, let n = 2λ + 1
⇒ nC1(cos2x)λsinx−nC3(cos2x)λ−1sin3x+..........
⇒ nC1(1−sin2x)λsinx−nC3(1−sin2x)λ−1sin3x+..........
⇒ nC1sinx−(nC1−nC1.nC3)sin3x+.......
⇒ a0=0,a1=n