sinπ2-sin-1-32=
32
-32
12
-12
Explanation for the correct answer:
Simplifying the given expression using trigonometric identities:
sinπ2-sin-1-32=cossin-1-32∵sinπ2=cos=coscos-11–34∵sin-1x=cos-11-x2=1–34=4-34=14=12
Thus, sinπ2-sin-1-32=12
Therefore, option (C) is the correct answer.
Simplify:
(i) {(13)−3−(12)−3}÷(14)−3 (ii)(32−22)×(23)−3(iii) {(12)×(−4)−1}−1 (iv) [{(−14)2}−2]−1(v) {(23)2}3×(13)−4×3−1×6−1
Find the value of:
(1)
(2)
(3)
(4)
(5)