sin(π+θ)sin(π-θ)cosec2θ=
1
-1
sinθ
-sinθ
Explanation for the correct answer:
Simplifying the given expression using trigonometric identities:
Given sin(π+θ)sin(π-θ)cosec2θ=
Applying the trigonometric identities to simplify
sin(π+θ)sin(π-θ)cosec2θ=(-sinθ)(sinθ)cosec2θ∵sin(π+θ)=-sinθandsin(π-θ)=sinθ=-sin2θcosec2θ=-sin2θ1sin2θ∵cosecx=1sinx=-1
Therefore, option (B) is the correct answer.