sin(tan−1x),|x|<1, is equal to a) x√1−x2 b) 1√1−x2 c) 1√1+x2 d) x√1+x2
sin(tan−1x)=sin[sin−1x√1+x2][∵ tan−1x=sin−1x√1+x2] =x√1+x2. Hence, the correct option is (d).
Derivative of tan-1 x is