sinθ1-cotθ+cosθ1-tanθ=
0
1
cosθ–sinθ
cosθ+sinθ
Explanation for the correct answer:
Simplifying the given expression:
sinθ1-cotθ+cosθ1-tanθ=sinθ1-cosθsinθ+cosθ1-sinθcosθ∵cotθ=cosθsinθandtanθ=sinθcosθ=sin2θsinθ–cosθ+cos2θcosθ–sinθ=sin2θsinθ–cosθ-cos2θsinθ-cosθmakingthedenominatortobecommon=sin2θ-cos2θsinθ–cosθ=sinθ–cosθsinθ+cosθsinθ–cosθ∵a2-b2=a+ba-b=sinθ+cosθ
Therefore, sinθ1-cotθ+cosθ1-tanθ=cosθ+sinθ
Hence, option (D) is the correct answer.
x=eθ(θ+1θ),y=eθ(θ+1θ)