sinθ+√3cosθ=6x−x2−11
⇒sinθ+√3cosθ=−2−(x−3)2
But maximum value of L.H.S is 2 and maximum value
of R.H.S is −2,
thus solution is only possible if,
x=3 and sinθ+√3cosθ=−2
⇒12sinθ+√32cosθ=−1
⇒sinπ6sinθ+cosπ6cosθ=−1
⇒cos(θ−π6)=−1
therefore solution in the given interval is,
θ=π+π6,3π+π6
Hence, options 'B' and 'D' are correct.