sinx=14,x in Quadrant II. Find the value of sinx2
Given sinx=14,x in Quadrant II.
⇒π2<x<π and cos is negative in second quadrant
We know that cos2x=1-sin2x
But sinx=14 then
cos2x=1-sin2x=1-142=1-116=16-116cos2x=1516cosx=±1516cosx=±154
Since cos is negative in second quadrant , cosx=-154
Using 1-cosx=2sin2x2 i.e,
1-cosx=2sin2x2sinx2=±1-cosx2sinx2=±1--1542=±4+158Asπ2<x<π⇒π4<x2<π2
Since sin is positive in first quadrant
∴sinx2=8+2154.