sinx+cosx=y2−y+a As −√2≤sinx+cosx≤√2 Therefore, y2−y+a≥√2 or y2−y+a≤−√2 y2−y+a−√2≥0 or y2−y+a+√2≤0 1−4(a−√2)≤0 or 1−4(a+√2)≥0 a≥14+√2 or a≤14−√2