The correct option is D No value of x
Given : sinx+icos2x and
cosx−isin2x are conjugate.
Conjugate of (sinx+icos2x)
=sinx−icos2x
Now, comparing both of the
Conjugates, we get
sinx−icos2x=cosx−isin2x
Comparing the real and imaginary parts, we get
sinx=cosx and cos2x=sin2x
⇒tanx=1 and tan2x=1
⇒tanx=1 and tan2x=1
Now, tan2x=1
⇒2tanx1−tan2x=1, which is not satisfied
by tanx=1
Hence, no value of x is possible
Hence, Option (D) is correct.