wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin3 A+sin32π3+A sin34π3+A=-34 sin 3A

Open in App
Solution

LHS=sin3A+sin32π3+A+sin34π3+A =3sinA-sin3A4+3sin2π3+A-sin32π3+A4+3sin4π3+A-sin34π3+A4 sin3θ=3sinθ-sin3θ4 =3sinA-sin3A4+3sinπ-2π3+A-sin2π+3A4+3sinπ+π3+A-sin4π+3A4 =143sinA-sin3A+3sinπ3-A-sin3A-3sinπ3+A+sin3A =143sinA-sin3A+3sinπ3-A-3sinπ3+A-sin3A-sin3A

=143sinA-3sin3A+3sinπ3-A-sinπ3+A=143sinA-3sin3A+32cosπ3-A+π3+A2sinπ3-A-π3-A2 sinC-sinD=2cosC+D2sinC-D2=143sinA-3sin3A+6cosπ3sin-A=143sinA-3sin3A-3sinA=-34sinA=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon