sin47∘+sin61∘−sin11∘−sin25∘ is equal to
cos7∘
sin47∘+sin61∘−sin11∘−sin25∘sin47∘−sin25∘+sin61∘−sin11∘=2sin(47∘−25∘2)cos(47∘+25∘2)+2sin(61∘−11∘2)cos(61∘+11∘2)=2sin11∘ cos36∘+2sin25∘ cos36∘=2cos36∘(sin11∘+sin25∘)=2cos36∘{2sin(11∘+25∘2)cos(11∘−25∘2)}=4cos36∘ sin18∘ cos7∘=4×(√5−14)(√5+14)cos7∘[cos36∘=√5+14 and sin18∘√5−14]=5−14cos7∘=cos7∘