The given function is sin 3 x+ cos 3 x sin 2 x cos 2 x .
sin 3 x+ cos 3 x sin 2 x cos 2 x = sin 3 x sin 2 x cos 2 x + cos 3 x sin 2 x cos 2 x = sinx cos 2 x + cosx sin 2 x =tanxsecx+cotxcosecx (1)
From (1), we get,
∫ sin 3 x+ cos 3 x sin 2 x cos 2 x dx = ∫ ( tanxsecx )dx + ∫ ( cotxcosecx ) dx =secx−cosecx+c
Thus, the integral of the function sin 3 x+ cos 3 x sin 2 x cos 2 x is secx−cosecx+c.