1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiability in an Interval
Sketch the gr...
Question
Sketch the graph of
f
(
x
)
=
{
|
x
−
2
|
+
2
x
≤
2
x
2
−
2
,
x
>
2
.
Evaluate
∫
4
0
f
(
x
)
d
x
.
What does the value of this integral represent on the graph?
Open in App
Solution
f
(
x
)
=
|
x
−
2
|
+
2
x
⩽
2
x
2
−
2
x
>
2
f
(
x
)
=
4
−
x
x
⩽
2
x
2
−
2
x
>
2
∫
4
0
f
(
x
)
d
x
=
∫
2
0
(
4
−
x
)
d
x
+
∫
4
2
(
x
2
−
2
)
d
x
∫
4
0
f
(
x
)
d
x
=
4
×
(
2
−
0
)
−
(
2
2
−
0
)
2
+
4
3
−
2
3
3
−
2
×
(
4
−
2
)
∴
∫
4
0
f
(
x
)
d
x
=
62
3
Suggest Corrections
0
Similar questions
Q.
Sketch the graph of
f
(
x
)
=
{
|
x
−
1
|
+
2
,
x
≤
2
x
2
−
2
,
x
>
2
. Evaluate
∫
4
0
f
(
x
)
d
x
. What does the value of this integral represent on the graph?
Q.
Sketch the graph
y
=
|
x
−
1
|
. Evaluate
∫
4
−
2
|
x
−
1
|
d
x
. What does this value of the integral represent on the graph?
Q.
Sketch the graph y = | x − 5 |. Evaluate
∫
0
1
x
-
5
d
x
. What does this value of the integral represent on the graph.