Slope of tangent to the curve y3=3ax2+6x+b at (1,1) is 2, then the absolute value of a+b is
Open in App
Solution
Given, y3=3ax2+6x+b
Differentiating w.r.t. x ⇒3y2dydx=6ax+6 ⇒dydx∣∣∣(1,1)=6(a+1)3=2(a+1)⇒2(a+1)=2 ⇒a=0
and (1,1) lies on the curve y3=3ax2+6x+b ⇒1=3a+6+b ⇒b=1−3a−6 ⇒b=1+0−6=−5 ∴|a+b|=5