Solution of differential equation dydx+yx=1(1+ℓnx+ℓny) is (where C is an integration constant)
The solution of differential equation dydx+2xy1+x2=1(1+x2)2 is (a) y(1+x2)=C+tan−1x (b) y1+x2=C+tan−1x (c) ylog(1+x2)=C+tan−1x (d) y(1+x2)=C+sin−1x