Solution of differential equation x2dydx+y2ex(y−x)y=2y(x−y) be given by
x(x–y)=ylog(Cex–1)
x2dydx−2y(x−y)+y2exe−x2y=0x2y2dydx−2(x−y)y=−exe−x2yex2yx2y2dydx−2xyex2y+ex=0
Let ex2y=tex2y(2xy−x2dydxy2)=dtdx⇒ex2y2xy−x2y2e−x2ydydx=dtdx−dtdx+2t+ex=0⇒dtdx−2t=ex
On solving, t=−ex+Ce2x
Where C is constant of integration
or ex2y=−1+CEx
(x2y−x)=log(Cex−1)x(x−y)=ylog(Cec−1)