1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Equality of 2 Complex Numbers
Solution of ...
Question
Solution of
(
x
+
y
−
a
x
+
y
−
b
)
(
d
y
d
x
)
=
(
x
+
y
+
a
x
+
y
+
b
)
A
l
o
g
[
(
x
+
y
)
2
−
a
b
]
=
2
b
−
a
[
x
−
y
]
+
k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
l
o
g
[
(
x
+
y
)
2
+
a
b
]
=
1
b
−
a
[
x
−
y
]
+
k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(
b
−
a
2
)
[
l
o
g
(
(
x
+
y
)
2
−
a
b
)
]
=
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
l
o
g
[
(
x
+
y
)
2
−
a
b
]
=
2
b
−
a
[
x
−
y
]
+
k
Consider the problem
Let
x
+
y
=
z
then,
1
+
d
y
d
x
=
d
z
d
x
d
y
d
x
=
d
z
d
x
−
1
therefore,
(
z
−
a
z
−
b
)
(
d
z
d
x
−
1
)
=
z
+
a
z
+
b
d
z
d
x
=
1
+
(
z
+
a
)
(
z
−
b
)
(
z
−
a
)
(
z
+
b
)
=
(
z
−
a
)
(
z
+
b
)
+
(
z
+
a
)
(
z
−
b
)
(
z
−
a
)
(
z
+
b
)
=
z
2
+
b
z
−
a
z
−
a
b
+
z
2
−
b
z
+
a
z
−
a
b
(
z
−
a
)
(
z
+
b
)
d
z
d
x
=
2
(
z
2
−
a
b
)
(
z
−
a
)
(
z
+
b
)
∫
(
z
−
a
)
(
z
+
b
)
(
z
2
−
a
b
)
d
z
=
∫
2
d
x
+
C
=
2
x
+
C
∫
(
z
2
−
a
b
)
+
z
(
b
−
a
)
(
z
2
−
a
b
)
d
z
=
2
x
+
C
∫
{
1
+
z
(
b
−
a
)
(
z
2
−
a
b
)
}
d
z
=
2
x
+
C
z
+
(
b
−
a
)
2
ln
(
z
2
−
a
b
)
=
2
x
+
C
(
b
−
a
)
2
ln
(
z
2
−
a
b
)
=
2
x
+
C
−
(
x
+
y
)
=
x
−
y
+
C
2
(
x
−
y
+
C
)
=
(
b
−
a
)
ln
[
(
x
+
y
)
2
−
a
b
]
Suggest Corrections
0
Similar questions
Q.
What is the solution of DE
(
y
x
+
sin
y
)
dx
+
(
log
x
+
x
cos
y
)
dy
=
0