1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Modulus
Solution of ...
Question
Solution of
(
x
+
y
−
a
x
+
y
−
b
)
(
d
y
d
x
)
=
(
x
+
y
+
a
x
+
y
+
b
)
is:
A
log
[
(
x
+
y
)
2
−
a
b
]
=
2
b
−
a
[
x
−
y
]
+
k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
log
[
(
x
+
y
)
2
+
a
b
]
=
1
b
−
a
[
x
+
y
]
+
k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(
b
−
a
2
)
[
log
(
(
x
+
y
)
2
−
a
b
)
]
=
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
log
(
x
+
y
)
=
x
+
y
b
−
a
+
k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
log
[
(
x
+
y
)
2
−
a
b
]
=
2
b
−
a
[
x
−
y
]
+
k
d
y
d
x
=
(
x
+
y
+
a
)
(
x
+
y
−
b
)
(
x
+
y
−
a
)
(
x
+
y
+
b
)
Let
x
+
y
=
v
d
y
d
x
=
d
v
d
x
−
1
⇒
d
v
d
x
−
1
=
(
v
+
a
)
(
v
−
b
)
(
v
−
a
)
(
v
+
b
)
d
v
d
x
=
(
v
+
a
)
(
v
−
b
)
+
(
v
−
a
)
(
v
+
b
)
(
v
−
a
)
(
v
+
b
)
=
v
2
−
b
a
+
a
v
−
v
b
+
b
v
−
a
v
+
v
2
−
a
b
(
v
−
a
)
(
v
+
b
)
=
2
(
v
2
−
a
b
)
(
v
−
a
)
(
v
+
b
)
⇒
(
v
−
a
)
(
v
+
b
)
2
(
v
2
−
a
b
)
d
v
=
d
x
⇒
1
2
[
1
−
(
a
−
b
)
v
v
2
−
a
b
]
d
v
=
d
x
⇒
1
2
∫
[
1
−
(
a
−
b
)
v
v
2
−
a
b
]
d
v
=
∫
d
x
⇒
1
2
∫
d
v
−
∫
(
a
−
b
)
v
v
2
−
a
b
d
v
=
∫
d
x
Let
v
2
−
a
b
=
t
⇒
2
v
d
v
=
d
t
⇒
1
2
∫
d
v
−
(
a
−
b
)
2
∫
1
t
d
t
=
∫
d
x
⇒
1
2
[
v
+
(
b
−
a
)
2
l
o
g
(
t
)
]
=
x
⇒
1
2
[
v
+
(
b
−
a
)
2
l
o
g
(
v
2
−
a
b
)
]
=
x
⇒
2
v
+
(
b
−
a
)
l
o
g
(
v
2
−
a
b
)
=
4
x
⇒
(
b
−
a
)
l
o
g
(
v
2
−
a
b
)
=
4
x
−
2
v
⇒
(
b
−
a
)
l
o
g
(
(
x
+
y
)
2
−
a
b
)
=
2
(
x
−
y
)
+
c
where
v
=
x
+
y
⇒
log
[
(
x
+
y
)
2
−
a
b
]
=
2
(
x
−
y
)
(
b
−
a
)
+
c
Suggest Corrections
0
Similar questions
Q.
What is the solution of DE
(
y
x
+
sin
y
)
dx
+
(
log
x
+
x
cos
y
)
dy
=
0