Solution of logx2+6x+8 logx2+2x+3 (x2−2x)=0 is
a negative integer
-1
We must have x2+6x+8>0, 2x2+2x+3>0and x2+6x+8≠1, 2x2+2x+3≠1∴(x+4)(x+2)>0 and, (x+1/2)2+54>0⇒xϵ(−∞, −4)∪(−2,∞) and x≠−3±√2 (1)and x2−2x>0 i.e., xϵ(−∞,0)∪(2,∞)
The given equation can be written as
log2x2+2x+3 (x2−2x)=1⇒x2−2x=2x2+2x+3⇒x2+4x+3=0⇒x=−1, −3x=−3 does not satisfy (1) so x=−1.