Solution of the differential eqaution (1+ln2−dydx)2x=dydx−1 if the curve passes through (0,ln2) is
A
y=ln(1+2x)−x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=ln(1+2x)+x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=ln(2x−1)+x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=ln(2x−1)−x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is By=ln(1+2x)+x Differential equation (1+ln2−dydx)2x=dydx−1(1+ln2)2x−2xdydx=dydx−12xdydx+dydx=(1+ln2)2x+1(2x+1)dydx=2xln2+1+2xdydx=2xln22x+1+1dy=2xln22x+1dx+1dx Integrating both the sides ∫1dy=∫2xln22x+1dx+∫1dx
Let 2x+1=y⇒dy=2xln2 ∴y=∫1tdt+xy=x+lnt+cy=x+ln(1+2x)+c Now, the curve passes through (0,ln2) putting the values in the equation of the curve ln2=0+ln(1+1)+c⇒c=0∴y=x+ln(1+2x)