wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the differential equation (1+x2)dy+2xydx=cotxdx is

A
y=log|sinx|(1+x2)+C(1+x2)1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=log|sinx|(1+x2)1+C(1+x2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=log|sinx|(1+x2)+C(1+x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=log|sinx|(1+x2)1+C(1+x2)1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D y=log|sinx|(1+x2)1+C(1+x2)1
(1+x2)dy+2xydx=cotxdx
Put in form dydx+PY=Q
(1+x)2dy+2xydx=cotxdx
dividing both sides by (1+x2)
dydx+2xy1x2dxdx=cotx(1+x2)dxdx
dydx+(2x1+x2)y=cotx1+x2
Find P and Q
dydx+PY=Q
P=2x1+x2
Q=cotx1+x2
If=e2x1+x2 t=1+x2
If =edtt=elogt=t=1+x2
Solution: Y×IF=Q×IFdx+C
Y(1+x2)=cotx1+x2×(1+x2)dx+c
Y(1+x2)=cotxdx+c
Y(1+x2)=log|sinx|+c
Y=(1+x2)1log|sinx|+c(1+x2)1.

1191520_1157095_ans_5d48a4f501754c9d86470142f015cd35.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon