wiz-icon
MyQuestionIcon
MyQuestionIcon
10
You visited us 10 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the differential equation cosxdy=y(sinxy)dx,0<x<π2 is

A
secx=(tanx+c)y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ysecx=tanx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ytanx=secx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanx=(secx+c)y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A secx=(tanx+c)y
1y2dydx1ytanx=secx

Let 1y=t

1y2dydx=dtdx

dtdx+ttanx=secx

t.etanxdx=etanxdx.secxdx

t.eln(secx)=eln(secx).secxdx

1ysecx=sec2xdx

1ysecx=tanxc

secx=(tanx+c)y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon