The correct option is C y=x2(lnx)−x4+Cx
It is a linear differential equation of the form dydx+Py=Q(x)
Here, P=1x, Q=ln(x)
The I.F.=e∫Pdx=e∫1xdx=eln|x|=x
Hence the general solution is
y(IF)=∫Q(IF)dx+C
⇒yx=∫(lnx)xdx+C
On integrating By parts we get:
⇒yx=(lnx)⋅x22−∫1x⋅x22dx+C
⇒yx=x22(lnx)−x24+C
⇒y=x2(lnx)−x4+Cx