wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the differential equation dydx+ysecx=tanx(x<π2) is

A
y(secxtanx)=(secx+tanx)x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y(secx+tanx)=(secxtanx)x+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y(secx+tanx)=(secx+tanx)x+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
noneofthese
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D y(secx+tanx)=(secx+tanx)x+C
dydx+ysecx=tanx
dydx+Py=Q
If =Pdx=elog|secx+tanx|
=secx+tanx
Y(IF)=(Q×IF)dx+C
Y(secx+tanx)=tanx(secx+tanx)+C
Y(secx+tanx)=tanxsecx+tan2xdx
Y(secx+tanx)=secx+sec21dx+C
Y(secx+tanx)=secx+tanxx+C





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon