Solution of the differential equation x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+...... is -
A
y=logex+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=(logex)2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=±√(logex)2+2C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
xy=xy+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cy=±√(logex)2+2C We have x=exy.dy/dx ⇒logx=xydydx⇒ydy=logxxdx On integration, we get y22=(logex)22+C ⇒y2=(logex)2+2C Hence y=±√(logex)2+2C