wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the differential equation dydx+yx = sin x is
(a) x (y + cos x) = sin x + C
(b) x (y − cos x) = sin x + C
(c) x (y + cos x) = cos x + C
(d) none of these

Open in App
Solution

(a) x (y + cos x) = sin x + C


We have,dydx+yx=sin xdydx+1xy=sin x .....1Comparing with dydx+Py=Q, we getP=1x Q=sin xNow,I.F.=e1xdx =elogx =xTherefore, integration of 1 is given byy×I.F.=x2×I.F. dx+C yx=xI sin xIIdx+Cyx=xsin x dx-ddxxsin x dxdx+Cyx=-x cos x+cos x dx+Cyx+x cos x=sin x+Cxy+cos x=sin x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon