Solution of the differential equation √xdx+√ydy√xdx−√ydy=√y3x3 is given by
None of the above
We have, √xdx+√ydy√xdx−√ydy=√y3x3
⇒d(x3/2)+d(y3/2)d(x3/2)−d(y3/2)=y3/2x3/2
⇒du+dvdu−dv=vu, where u=x3/2 and v=y3/2
⇒u du+u dv=v du−v dv
⇒u dv+v dv=v du−u dv
⇒u du+v dvu2+v2=v du−u dvu2+v2
⇒d(u2+v2)u2+v2=−2d(tan−1(uv))
On integrating, we get
log(u2+v2)=−2 tan−1(uv)+c
⇒12log(x3+y3)+tan−1(xy)3/2=c2=C
Where, c and C are constants.