Solution of the differential equation √xdx+√ydy√xdx−√ydy=√y3x3 is given by
A
32log(yx)+log∣∣
∣∣x32+y32x32∣∣
∣∣+tan−1(yx)32+c=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
23log(yx)+log∣∣
∣∣x32+y32x32∣∣
∣∣+tan−1yx+c=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
23log(yx)+log(x+yx)+tan−1(y32x32)+c=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D
None of the above
we have √xdx+√ydy√xdx−√ydy=√y3x3 ⇒d(x32)+d(y32)d(x32)−d(y32)=y32x32⇒du+dvdu−dv=vu,whereu=x32andv=y32⇒udu+udv=vdu−vdu⇒udu+vdv=vdu−udv⇒udu+vdvu2+v2=vdu−udvu2+v2⇒d(u2+v2)u2+v2=−2dtan−1(vu) On integrating, we get log(u2+v2)=−2tan−1(vu)+c⇒12log(x3+y3)+tan−1(yx)32=c