Solution of the differential equation: x+ydydxy−xdydx=xsin2(x2+y2)y3
The given differential equation can be written as
xdx+ydyydx−xdy=xsin2(x2+y2)y3⇒2xdx+2ydyydx−xdy=2xsin2(x2+y2)y3⇒d(x2+y2)sin2(x2y2)=2xy3(ydx−xdy)⇒cosec2(x2+y2)d(x2+y2)=2(xy)d(xy)
On integrating, we get
∫cosce2(x2+y2)d(x2+y2)=2∫(xy)d(xy)
−cot(x2+y2)=(xy)2+c
y2x2+y2c=−tan2(x2+y2)