The correct option is D eyeex=exeex−eex+c
Multiplying the given equation by ey, we get
eydydx+exey=e2x ⋯(1)
Putting ey=v, so that eydydx=dvdx,
and equation (1) transform to dvdx+exv=e2x
On comparing with dvdx+Pv=Q,
We get P=ex and Q=e2x
I.F.=e∫ex dx=eex
Hence solution is veex=∫e2xeexdx
⇒veex=∫(ex)e(ex)(exdx)
Let ex=t⇒exdx=dt
⇒veex=∫tet dt
⇒eyeex=tet−et+c
⇒eyeex=exeex−eex+c