Solution of the differential equation (x2+1)y′+2xy=4x2 is
We have,
(x2+1)y′+2xy=4x2
⇒(x2+1)dydx+2xy=4x2
⇒dydx+2x(x2+1)y=4x2(x2+1)
On comparing that,
dydx+Py=Q
Now,
P=2xx2+1,Q=4x2x2+1
I.F.=e∫pdx
=e∫2x1+x2dx
=elog(x2+1)∴elogx=x
=(x2+1)
Now,
y×I.F.=∫Q.IFdx+C
y×(x2+1)=∫4x2(x2+1)×(x2+1)dx+C
y(x2+1)=∫4x2dx+C
y(x2+1)=4∫x2dx+C
y(x2+1)=4x33+C
y(x2+1)=4x33+C
Hence, this is the answer.