The correct option is C secy=(1+x)+Cex
The given differential equation is
sinydydx=cosy(1−xcosy)
⇒sinydydx−cosy=−xcos2y
Dividing both sides by cos2y, we get:
tany⋅secy⋅dydx−secy=−x
Put secy=v⇒secytany⋅dydx=dvdx
So, the given differential equation converts to: dvdx−v=−x
which is linear differential equation with P=−1,Q=−x
I.F.=e∫Pdx=e∫−1dx=e−x
The solution is given by
v⋅e−x=∫−x⋅e−xdx=xe−x+e−x+C
⇒v⋅e−x=e−x(x+1)+C
⇒v=(1+x)+Cex
⇒secy=(1+x)+Cex