The correct option is B tanx⋅tany=k
Given:
tanysec2xdx+tanxsec2ydy=0⇒sec2xtanxdx+sec2ytanydy=0⇒sec2xtanxdx=−sec2ytanydy
Integrating on both sides, we get
⇒∫sec2xtanxdx=−∫sec2ytanydy
Taking tanx=u, tany=v, then
⇒sec2x dx=du,sec2y dy=dv
Now ⇒∫1udu=−∫1vdv
⇒ln|u|=−ln|v|+c
⇒ln|u|+ln|v|=c
⇒ln|uv|=c
⇒ln|tanx⋅tany|=c
⇒|tanx⋅tany|=ec
⇒tanx⋅tany=±ec=k