wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the differential equation tany.sec2xdx+tanx.sec2ydy=0 is

A
tanx+tany=k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tanxtany=k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanxtany=k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanx.tany=k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B tanx.tany=k
tany.sec2xdx+tanx.sec2ydy=0tanysec2xdx=tanxsecydysec2xdxtanx=sec2ydytanyIntegrating,sec2xdxtanx=sec2ydytanyd(tanx)tanx=d(tany)tanyln|tanx|=ln|tany|+Cln|tanx|+ln|tany|=Cln|tanx.tany|=Ctanx.tany=eCtanx.tany=k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon