The correct option is A y23=14(x−1)2+25(x−1)+c(x−1)−23
(x−1)dy+ydx=x(x−1)y13dx
Dividing by dxy13(x−1), the given equation reduces to
y−13dydx+1x−1y23=x
Put y23=z, so that 23y−13dydx=dzdx
then given equation reduces to
dzdx+23(x−1)z=23x (linear form)
On comparing with,dzdx+Pz=Q,
We get, P=23(x−1)& Q=2x3
I.F.=e23∫1x−1dx=e23ln|x−1|=(x−1)23
∴ Solution is given by
z(x−1)23=23∫x(x−1)23dx+c
Putting (x−1)=t3 in the R.H.S., we get
z(x−1)23=23∫x(x−1)23dx=23∫(t3+1)t23t2dt
z(x−1)23=2∫(t7+t4)dt=2[(18)t8+(15)t5]+c
z(x−1)23=(28)(x−1)83+(25)(x−1)53+c
Hence, the solution is y23=14(x−1)2+25(x−1)+c(x−1)−23