The correct option is A y=a2log∣∣∣x−y−ax−y+a∣∣∣+c
Given, Differential equation as (x−y)dydx=a2−−−−>A
Let x−y=t
On differentiating both sides
ddx(x−y)2=dtdx
(1−dydx)=dtdx
dydx=1−dtdx−−−−>B
Substituting B in A
⇒t2∗(1−dtdx)=a2
⇒t2∗−t2dtdx)=a2
⇒dtdx=(t2−a2)t2
⇒t2(t2−a2)dt=dx
On integrating both sides
⇒∫t2(t2−a2)dt=∫dx
⇒∫(1+a2(t2−a2)dt=∫dx
⇒(t+a2∗12aln|(t−a)(t+a)|)=x+C
But t=(x−y)
⇒((x−y)+a2ln|(x−y−a)(x−y+a)|)=x+C
⇒y=a2ln|(x−y−a)(x−y+a)|+C