The correct option is D −1xy+logy=c
Given differential equation is
ydx+(x+x2y)dy=0 ....(1)
Comparing with Mdx+Ndy=0
Here, M=y;N=1+2xy
δMδy=1
δNδx=1+2xy
⇒δMδy≠δNδx
Hence, the given eqn is not exac.
So, dividing (1) by x2y2
⇒ydx+xdyx2y2+dyy=0
⇒d(−1xy)+dyy=0
Integrating , we get
⇒−1xy+logy=c