Solution of the diffferential equation xdy=(y+xy3(1+logex))dx is
A
−x2y2=23x3(23+logex)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2y2=23x3(23+logex)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2y=23x3(23+logex)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−x2y=23x3(23+logex)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−x2y2=23x3(23+logex)+C xdy=(y+xy3(1+logex))dx⇒xdy−ydx=xy3(1+logex)dx⇒xdy−ydxy2=xy(1+logex)dx⇒−d(xy)=xy(1+logex)dx⇒−∫xyd(xy)=∫x2(1+logex)dx+C⇒−x22y2=x33(1+logex)−∫x23dx+C⇒−x22y2=x33(1+logex)−x39+C⇒−x22y2=x33(23+logex)+C