Solution of the equation 2tan−1(cosx)=tan−1(2cosecx) is
None of these
2tan−1(cosx)=tan−1(2cosecx) ⇒tan−1(2cosx1−cos2x)=tan−12 cosecx ⇒2cosx.cosec2x=2cosecx cosecx(cotx−1)=0⇒cotx=1[∵cosecx≠0] ∴x=nπ+π4 n ϵ l