Solution of the equation 3tan(θ–15°)=tan(θ+15°) is
θ=nπ–π3
θ=nπ+π3
θ=nπ-π4
θ=nπ+π4
Explanation for the correct answer:
Determining the value of θ.
We have the equation as:
⇒3×tan(θ–15°)=tan(θ+15°)
⇒tan(θ+15°)tan(θ–15°)=31
By applying componendo and dividendo rule, i.e., ab=cd⇒a+ba-b=c+dc-d
⇒3+13-1=tan(θ+15°)+tan(θ–15°)tan(θ+15°)–tan(θ–15°)⇒42=sin(θ+15°)cos(θ+15°)+sin(θ–15°)cos(θ–15°)sin(θ+15°)cos(θ+15°)-sin(θ–15°)cos(θ–15°)∵tanx=sinxcosx⇒2=sin(θ+15°)cos(θ–15°)+sin(θ–15°)cos(θ+15°)sin(θ+15°)cos(θ–15°)–sin(θ–15°)cos(θ+15°)⇒2=sin(θ+15°+θ–15°)sin(θ+15°–θ+15°)⇒2=sin2θsin30°⇒2sin30°=sin2θ⇒sin2θ=212∵sin30°=12⇒sin2θ=1⇒2θ=sin-1(1)⇒2θ=2nπ+π2∵sin-1(1)=2nπ+π2⇒θ=nπ+π4]
Therefore, the correct answer is option (D).