wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the equation 3tan(θ15°)=tan(θ+15°) is


A

θ=nππ3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

θ=nπ+π3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

θ=nπ-π4

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

θ=nπ+π4

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

θ=nπ+π4


Explanation for the correct answer:

Determining the value of θ.

We have the equation as:

3×tan(θ15°)=tan(θ+15°)

tan(θ+15°)tan(θ15°)=31

By applying componendo and dividendo rule, i.e., ab=cda+ba-b=c+dc-d

3+13-1=tan(θ+15°)+tan(θ15°)tan(θ+15°)tan(θ15°)42=sin(θ+15°)cos(θ+15°)+sin(θ15°)cos(θ15°)sin(θ+15°)cos(θ+15°)-sin(θ15°)cos(θ15°)tanx=sinxcosx2=sin(θ+15°)cos(θ15°)+sin(θ15°)cos(θ+15°)sin(θ+15°)cos(θ15°)sin(θ15°)cos(θ+15°)2=sin(θ+15°+θ15°)sin(θ+15°θ+15°)2=sin2θsin30°2sin30°=sin2θsin2θ=212sin30°=12sin2θ=12θ=sin-1(1)2θ=2nπ+π2sin-1(1)=2nπ+π2θ=nπ+π4]

Therefore, the correct answer is option (D).


flag
Suggest Corrections
thumbs-up
22
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon