wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the equation 4cot2θ=cot2θtan2θ is

A
θ=nπ±π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
θ=nπ±π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
θ=nπ±π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C θ=nπ±π4
We have, 4cot2θ=cot2θtan2θ4tan2θ=1tan2θtan2θ

Substitute tan2θ=2tanθ1tan2θ

4(1tan2θ)2tanθ=1tan4θtan2θ

(1tan2θ)[2tanθ(1+tan2θ)]=0

(1tan2θ)(tan2θ2tanθ+1)=0

(1tan2θ)(tanθ1)2=0

(1tanθ)3(1+tanθ)=0

tanθ=1,1

θ=nπ±π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon