Solution of the equation cot−1x+sin−11√5=π4
x = 3
x=1/√5
x = 0
x=-3
We have, cot−1x+sin−11√5=π4 ⇒tan−11x+tan−11/√5√1−15=π4 ⇒tan−11x+tan−112=tan−11 ⇒tan−11x=tan−11−tan−112 ⇒tan−11x=tan−1(1−121+1.12) ⇒tan−11x=tan−1(13⇒x=3)