wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solution of the system of the equations:⎡⎢⎣abca2b2c2a3b3c3⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣dd2d3⎤⎥⎦,a≠b≠c≠0, is

A
x=d(d+b)(cd)a(ab)(ca),y=d(ad)(dc)b(ab)(bc),z=d(bd)(da)c(bc)(ca)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=d(db)(cd)a(ab)(ca),y=d(a+d)(dc)b(ab)(bc),z=d(bd)(da)c(bc)(ca)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=d(db)(cd)a(ab)(ca),y=d(ad)(dc)b(ab)(bc),z=d(bd)(da)c(bc)(ca)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(0,0,0)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C x=d(db)(cd)a(ab)(ca),y=d(ad)(dc)b(ab)(bc),z=d(bd)(da)c(bc)(ca)
Given abca2b2c2a3b3c3xyz=dd2d3
Using Cramer's rule,
Δ=∣ ∣ ∣abca2b2c2a3b3c3∣ ∣ ∣=abc(ab)(bc)(ca)Δx=∣ ∣ ∣dbcd2b2c2d3b3c3∣ ∣ ∣=dbc(db)(bc)(cd)Δy=∣ ∣ ∣adca2d2c2a3d3c3∣ ∣ ∣=adc(ad)(dc)(ca)Δz=∣ ∣ ∣abda2b2d2a3b3d3∣ ∣ ∣=abd(ab)(bd)(da)x=ΔxΔ=d(db)(cd)a(ab)(ca),y=ΔyΔ=d(ad)(dc)b(ab)(bc),z=ΔzΔ=d(bd)(da)c(bc)(ca)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon