The correct option is A (x+y)a=tany+ca, c is an arbitrary constant
(x+y)2dydx=a2
Let x+y=z
⇒1+dydx=dzdx⇒dydx=dzdx−1
(x+y)2dydx=a2⇒z2(dzdx−1)=a2⇒dzdx=a2+z2z2⇒dx=z2z2+a2dz⇒dx=dz−a2z2+a2dz
Integrating both the sides
x=z−atan−1za+c⇒x/=x/+y−atan−1x+ya+c⇒y+ca=tan−1x+ya⇒tany+ca=(x+y)a