The correct option is B 13
log10(x−9)+2log10√2x−1=2
Above equation is valid when x−9>0 and 2x−1>0
⇒x>9
log10(x−9)+2log10√2x−1=2
⇒log10(x−9)+log10(√2x−1)2=2,[∵mlogx=logxm]
⇒log(x−9)(2x−1)=2,[∵loga+logb=log(ab)]
⇒(x−9)(2x−1)=100
⇒x=−72,13
Since, x>9
Therefore, x=13
Ans: B