Solution to the differential equation x+x33!+x55!+……1+x22!+x44!+……=dx−dydx+dy is
2y.e2x=C.e2x+1
2y.e2x=C.e2x−1
y.e2x=C.e2x+2
2x.e2y=C.ex−1
Applying C and D,we get
dydx=e−xex=e−2x
2y=−e−2x+c
The solution of the differential equation x dydx+y=x2+3x+2 is