Let P(x,y) be the centre of the circle passing through the points o(0,0), A(-2,1) and B(-3,2). Then
,OP=AP=BP
Now, OP=AP
⇒OP2=AP2
⇒x2+y2=(x+2)2+(y−1)2
⇒x2+y2=x2+y2+4x−2y+5
⇒4x−2y+5=0
and, OP=BP
⇒OP2=BP2
⇒x2+y2=(x+3)2+(y−2)2
⇒x2+y2=x2+y2+6x−4y+13
⇒6x−4y+13=0 On solving equations (i) and (ii), we getx=32andy=112, Thus, the cooridinates of the centre are(32,112) Now,
Radius==OP=√x2+y2=√94+1214=12√130units