1+4+7+10+....+x=590
Its an A.P., where
a=1d=4−1=3,Sn=590
in order to find x, we need to find the number of terms i.e. n
Sn=n2(2a+(n−1)d)
590=n2(2×1+(n−1)(3))
590=n2(2+n(3)−(3))
590=n2(2+3n−3)
590=n2(3n−1)
590×2=n(3n−1)
1180=3n2−n
0=3n2−n−1180
Here we have a quadratic equation i.e.
3n2−n−1180=0
To find the value of n, we need to find the roots of the equation by the formula,
n=−b±√b2−4ac2a
where a=3,b=−1andc=1180
n=−(−1)±√(−1)2−4×3×(−1180)2×3
n=1±√1+141606
n=1±√141616
n=1±1196
n=1+1196 or n=1−1196
n=1206 or n=−1186
Since the number of terms i.e. n cannot be negative therefore, n=20
For finding the last term,
x=a+(n−1)d
x=1+(20−1)(3)
x=1+19(3)
x=1+57
x=58
So, the last term of the series i.e. x is 58